
DSL3S – Domain Specific Language for Spatial Simulation
Scenarios

Simple Test Session – User Guide, v1.0, 2015

The main goal of this User Test Session is to perform an evaluation of DSL3S
(language and framework) by users not familiarized with it, in order to assess
usability and detect eventual bugs or other limitations. This evaluation will be
performed through the development of a very simple case study with a Predator-
Prey model. The results gathered will be used to assess the language usability as
well as its future enhancements. The case study application is described below.

Conditions:
This User Test Session will be conducted under the following conditions:
 Realization of the task without previous knowledge on DSL3S;

 The user must have a computer connected to the internet and running Eclipse
Luna and Java 8;

 While users perform the assigned task, their behavior and performance will be
registered;

 Performance criteria like the time spent and number of errors made will be
taken into account;

 Users can think out loud and share ideas if they want;
 The evaluator does not interact with the users until the tests are finished

(except in case of blocking errors);
 The test itself is planned to last 50 minutes (at most).

Case Study – Predator-Prey simulation

This simulation evolves in a space covered with pasture feedstock of variable
volume, available from a raster dataset. The feedstock replenishes itself slowly at
each time step.

A prey animat wonders around grazing the available pasture. Prey spends its
internal energy moving at each time step and stores the energy gazed from the
pasture. When it reaches a certain high amount of stored energy, the prey can
reproduce creating a new prey that inherits part of the energy stored by its parent.
If the energy stored by a prey falls down to 0 it is discarded from the simulation.
Initial locations of prey, as well as stored energy, are available from a vector
dataset.

At simulation start a number of predator animats are cast randomly over the
pasture space. They possess an energy store that they spend as they move. They
seek prey, taking all their stored energy when captured (i.e. when in the same
location). Like prey, predators replicate themselves when their energy store raises
above a certain threshold and perish if it falls to 0.

An additional vector layer portraits areas where prey cannot go, limiting their
movements. In these areas the pasture grows freely and is left untouched.

Setup

1. Follow the instructions in the DSL3S Wiki to install the required plug-ins:

https://github.com/MDDLingo/DSL3S/wiki/Installation

2. Download the Java libraries (MASON, JTS, etc) as indicated in the Wiki.

3. Download the sample datasets from the following URL:

http://mddlingo.github.io/DSL3S/data/demoData.zip

Instructions :

4. Create a new Java project in Eclipse with the project wizard.

4.1 Select File menu > New > Other, search for Java Project and click Next.

4.2 Type a name for project (e.g. “Simple Test”) and click Next.

4.3 In the Source tab click Create new source folder in the Details section. Call
this new folder “src-gen” and click Finish in the new dialogue.

4.4 Add references to the Java libraries downloaded before (Libraries tab >
Add External JARs...); finally click Finish.

Figure 1 – The Libraries tab in New Java Project wizard after adding external JARs.

4.5 Keep (or switch to) the Papyrus perspective. If the Papyrus perspective button
is not visible use the menus: Window > Open Perspective > Other... .

Figure 2 – The perspectives selector is found at the top right corner; this exercise is to
be conducted in the Papyrus perspective.

http://mddlingo.github.io/DSL3S/data/demoData.zip
https://github.com/MDDLingo/DSL3S/wiki/Installation

5. Create a new folder in the project to contain the spatial datasets.

5.1 Right click the project in the Project Explorer view and select New >
Folder; type “data” for Folder name and click Finish.

5.2 Expand the datasets package downloaded in point 3 and and copy its
contents into the new data folder.

6. Create a new Papyrus model (File menu > New > Papyrus Model)

6.1 Name it “SimpleTest.di” and make sure the “SimpleTest” project is
selected; click Next>.

6.2 Select UML as language and Class Diagram for the first diagram; name it
“Simulation”.

7. Click on the diagram (large blank space in the middle) and in the Properties
view select the Profile tab.

7.1 Click the registered profile button () and then select DSL3S in the
following menus.

Figure 3 – The Properties view is found below the diagram space.

8. Add a new class by drag-and-dropping the Class element from the Palette to
the diagram and give it a suggestive name such as “MySimulation”.

8.1 With the new class element selected, access the Profile tab in the

Properties view and click the stereotype application button (). Select the
Simulation stereotype in the following menu, add it to the Applied
Stereotypes box with the arrow buttons and click OK.

8.2 In the Profile tab expand the Simulation item to view its properties.

8.3 Click on the simulName property and in the text input box to the right type
something like “Predator-Prey prototype”.

8.4. Edit spaceWidth and spaceHeight, setting both to “100“.

9. Add a new class to the diagram, naming it “Pasture”.

9.1 Apply the Spatial stereotype on it; set the inputLayer property to
“data/Pasture.agrid” and stepVariation to “0.5”.

9.2 Set colourMin to “224,224,128” and colourMax to “32,128,32”.

9.3 Link “Pasture” to the Simulation element with an association edge.

10. Add a new class to the diagram, and name it “Prey”.

10.1 Apply the Animat stereotype on it and set the inputLayer property to
“data/Prey.shp” and wanderer to “true”.

10.2 Set colourMin to “64,64,255” and colourMax to “32,32,186”.

10.3 Associate “Prey” to the Simulation element.

Figure 4 – The Properties view for an element with an applied stereotype. By
clicking on a property it is possible to change its value.

11.Open the Model Explorer view and right click on the root of the model tree.
Select New Diagram > Create new UML Class Diagram and name it “Prey”.

11.1 Drag-and-drop the “Prey” element from the model tree into this new
diagram.

11.2 Drag-and-drop the “Pasture” element in the same way.

Figure 5 – The Model Explorer view is found on the left, together or below the
Project Explorer view.

12.Create a new class, name it “PreyEnergy”.

12.1 Apply the Attribute stereotype on it. Set the inputAttribute property to
“Energy”, the stepVariation property to “-20”, maxValue to “50” and
display to “true”.

12.2 Associate “PreyEnergy” to the “Prey” element.

13. Create a new class and name it “Graze”.

13.1 Apply on it the Harvest stereotype, and set the percentHarvested
property to “100”.

13.2 Associate “Graze” with “PreyEnergy” and then with “Pasture”.

14. Save the model and generate code from it.

14.1 In the Project Explorer view expand the “SimpleTest” model item and
right-click the uml element, select MDD3S > Generate simulation from
DSL3S model.

14.2 Expand the src-gen folder and search for the GUI class (e.g.
SimpleSimGUI.java). Right click and select Run As > Java Application.

14.3 In the simulation window click the play button and observe the prey (blue
dots) wandering and grazing the pasture.

15. Add a new class to the “Prey” diagram and call it “PreyReplicate”.

15.1 1.1. Apply the Replicate stereotype and set lowerTreshold to “-1”,
upperTreshold to “40”, toll to “20” and inheritance also to “20”.

15.2 Associate “PreyReplicate” to the “PreyEnergy” attribute.

16. Add another, class calling it “PreyPerish”.

16.1 Apply the Perish stereotype and set lowerTreshold to “0” and
upperTreshold to “51”.

16.2 Associate “PreyPerish” to the “PreyEnergy” attribute.

17. Prey must seek the best pasture to survive. Create a class named “Prefer”.

17.1 Apply the Move stereotype to it, setting weight to “1” and scope to “1.5”.

17.2 Associate “Prefer” to “Prey” and then to “Pasture”.

18. Generate again the code and run it. Observe the prey replicating and rapidly
grazing the pasture.

19. Switch to the “Simulation” diagram and add a new class, named “Predator”.

19.1 Apply the Animat stereotype, set wanderer to “true” and initNum to “25”.

19.2 Set colourMin to “255,64,64” and colourMax to “192,0,0”.

19.3 Associate “Predator” with the Simulation element.

20. Create a new diagram named “Predator” and drag-and-drop “Predator” and
“PreyEnergy” into it.

21. In the new diagram add a new class called “PredEnergy”.

21.1 Apply the Attribute stereotype setting initValue to “50”, maxValue to
“100”, stepVariation to “-1” and display to “true”.

21.2 Associate “PredEnergy” with “Predator”.

22. Add another class called “PredReplicate”.

22.1 Apply the Replicate stereotype and set lowerTreshold to “-1”,
upperTreshold to “60”, toll to “30” and inheritance also to “30”.

22.2 Associate “PredReplicate” to the “PredEnergy” attribute.

23. Add yet another class called “PredPerish”.

23.1 Apply the Perish stereotype and and set lowerTreshold to “0” and
upperTreshold to “101”.

23.2 Associate “PredPerish” to the “PredEnergy” attribute.

24. Instruct “Predator” to seek for prey, add another class and call it “Seek”.

24.1 Apply the Move stereotype, set weight to “1” and scope to “1.5”.

24.2 Associate “Seek” with “Predator” and then with “PreyEnergy”.

25. Create a new diagram named “AnimatInteractions”; drag-and-drop the
“PredEnergy” and “PreyEnergy” elements.

26.In the new diagram add a new class named “FeedPredator”.

26.1 Apply the Supply stereotype and leave all properties by default.

26.2 Associate “FeedPredator” to “PreyEnergy”.

27.Add another class named “EatPrey”.

27.1 Apply the Harvest stereotype, set the percentHarvested property to “100”
and scope to “0.5”.

27.2 Associate “EatPrey” to “PredEnergy”.

28.Associate “FeedPredator” with “EatPrey”; “Predator” can now feed itself.

29. Generate the code again and run it. Observe predator animats feeding off the
excess of prey.

30. Switch to the “Simulation” diagram and add a class named “Inacessible”.

30.1 Apply the Spatial stereotype, set inputLayer to “data/Polygons.shp”, and
initValue to “1” .

30.2 Set colourMin and colourMax both to “160,160,160”.

30.3 Associate “Inaccessible” with “Simulation”.

31. Switch to the “Prey” diagram and drag-and-drop the “Inaccessible” element.

32. Create a new class named “Avoid”.

32.1 Apply the Move stereotype, setting weight to “-1000” and scope to “1.5”.

32.2 Associate “Avoid” to “Prey” and then to “Inacessible”.

33. Generate the code once again and observe that prey animats now avoid the
polygons representing inaccessible areas.

34. If the “Inacessible” areas are not visible they are probably hidden by the
“Pasture” Spatial element.

34.1 Transparency can be set on “Pasture”, adding a fourth parameter to the
colourMin and colourMax properties, e.g. to “224,224,128,128”.

Please, fill in the “DSL3S Questionnaire” available online:

http://goo.gl/forms/LQMClXU834

Further Info:
 Wiki: https://github.com/MDDLingo/DSL3S/wiki
 The article: de Sousa, L. and da Silva, A. R., “Preliminary Design and

Implementation of DSL3S”, CAMUSS - International Symposium on Cellular
Automata Modelling for Urban and Spatial Systems, Oporto, 2012.

http://isg.inesc-id.pt/alb/static/papers/2012/C115-ls-CAMUSS-2012.pdf

Thank you for participating!

http://isg.inesc-id.pt/alb/static/papers/2012/C115-ls-CAMUSS-2012.pdf
https://github.com/MDDLingo/DSL3S/wiki
http://goo.gl/forms/LQMClXU834

